

INDIAN SCHOOL AL WADI AL KABIR

Unit Test Model Paper (2025-2026) Sub: MATHEMATICS (041)

Max Marks: 30

Date: 11.05.2025 Time: 1 hr.

General Instructions:

Class: XII

- 1. This question paper is divided in to 4 sections- A, B, C and D.
- 2. Section A comprises of 7 questions of 1 mark each.
- 3. Section B comprises of 3 questions of 2 marks each.
- 4. Section C comprises of 3 questions of 3 marks each.
- 5. Section D comprises of 2 case study-based question.
- 6. Internal choice has been provided.

SECTION A											
Q.1.	If $\begin{bmatrix} x+y+z \\ x+y \\ y+z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$, then the value of $(2x+y-z)$ is:							1			
	A	1	В	2		С	3		D	5	
Q2.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 3, b > 6\}$, then							1			
	A	$(2,5) \in R$	В	$(6,3) \in \mathbf{R}$		С	$(5,8) \in \mathbf{R}$		D	$(1,4) \in R$	
Q3.	The value of $\cot^{-1} \sqrt{3} + \cos^{-1} \left(-\frac{1}{\sqrt{2}} \right)$ is equal to							1			
	A	π	В	$\frac{11\pi}{12}$		С	$-\frac{\pi}{12}$		D	$\frac{13\pi}{12}$	
Q4.	$\sin\left\{2\cos^{-1}\left(-\frac{3}{5}\right)\right\}$ is equal to							1			
	A	$\frac{6}{25}$	В	$\frac{24}{25}$		С	4 5		D	$-\frac{24}{25}$	
Q5.	For two square matrices of same order, which is true?							1			
	A	$(AB)^{-1} = A^{-1}B^{-1}$	-1 B	AB= BA	C	(AB)	$D^T = B^T A^T$	D	(A-	$+B)(A-B)=A^2-B^2$	
Q6.	Let $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$. Then R is							1			
	A	only reflexive	В	reflexive bu not transitiv		С	symmetric and transiti		D	Neither reflexive nor symmetric, nor transitive	

Q7	In the following question a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.					
	A) Both A and R are true and R is the correct explanation of A.					
	B) Both A and R are true but R is not the correct explanation of A.					
	C) A is true but R is false.					
	D) A is false but R is true.					
	Assertion (A): $cos^{-1}\left(cos\frac{13\pi}{6}\right) = \frac{\pi}{6}$					
	Reason (R): The range of principal value branch of $\cos^{-1}x$ is $[0, \pi]$					
	SECTION B					
Q8.	Compute the indicated product: $\begin{bmatrix} 3 & 2 \\ 1 & 4 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix}$	2				
Q9.	A = $[a_{ij}]$ where <i>A</i> is 2X2 matrix and $a_{ij} = \frac{i-2j}{2}$, then write all elements of A. Or	2				
	Sketch the graph of $f(x) = cos^{-1}x$, f: [-1, 1] to [0, π]					
Q10.	Prove that the relation R on the set N X N defined by (a, b) R (c, d), if $a + d = b + c$,	2				
	for all (a, b) , $(c, d) \in N \times N$ is an equivalence relation.					
	SECTION C					
Q11.	If $A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$ then prove $A^2 - 3A - 7I = 0$. Hence find A^{-1}	3				
Q12.	If $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 4 & 3 \\ 1 & 3 & 3 \end{bmatrix} find A^{-1}$ OR	3				
	Solve using matrices: $x + y + z = 8$; $2x - y = 10$; $x - y + 2z = 11$.					
Q13.	Show that the function $f(x) = \frac{x-2}{x-3}$, $f: R - \{3\}$ to $R - \{1\}$ is both one to one and onto.	3				

	SECTION D Case study-based questions						
	SECTION D Case study-based questions						
Q14	An architect is developing a plot of land for a commercial complex. When asked about the dimensions of the plot, he said that if the length is decreased by 25 m and the breadth is increased by 25 m, then its area increases by 625 m². If the length is decreased by 20 m and the breadth is increased by 10 m, then its area decreases by 200 m².						
	(i) Formulate the linear equations in x and y to represent the given information.						
	(ii) Find the dimensions of the plot of land by matrix method						
Q15	Hari visited an exhibition along with his family. The exhibition had a huge swing. Hari found that the swing traced the path of a Parabola as given by $f(x) = x^2 + 1$ Answer the following questions based on the above informations						
	i) What is the range of $f(x) = x^2 + 1$	1					
	ii) If $f(x) = x^2 + 1$, if $x \ge 0$, then find the preimage of 9.						
	iii) a) Show that $f(x) = \sin x$, f: R to R is neither one to one nor onto						
	OR						
	b) Determine whether $h(x) = x^2 + 2x + 1$, $f: [0, \infty)$ to $[0, \infty)$ is onto. If not modify the codomain so that $h(x)$ becomes an onto function.						

ANSWER

Q1	D	Q2	С	Q3	A
Q4	D	Q5	С	Q6	A
Q7	A	Q8	$\begin{bmatrix} 11 & 2 \\ 7 & 14 \\ 18 & 2 \end{bmatrix}$	Q9	$\begin{bmatrix} \frac{-1}{2} & \frac{-3}{2} \\ 0 & -1 \end{bmatrix}$
Q12	$\begin{bmatrix} 3 & 6 & -8 \\ 0 & 1 & -1 \\ -1 & -3 & 4 \end{bmatrix} OR$ $x = 5, y = 0, \qquad z = 3$	Q14	100m, 50 m		i) $[1, \infty)$ ii) $2\sqrt{2}$)b. $[2, , \infty)$
